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J. Phys. A: Math. Gen. 13 (1980) 1227-1242. Printed in Great Britain 

Semiclassical techniques for treating the one-dimensional 
Schrodinger equation: uniform approximations and 
oscillatory integrals 

B J B Crowley 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 26 June 1979, in final form 21 September 1979 

Abstract. A semiclassical theory based upon the oscillatory integral representation of the 
quantal wavefunction is applied to the one-dimensional Schrodinger equations describing 
motion in linear and parabolic potentials. It is demonstrated that the method yields exact 
solutions in both these cases. For more general one and two turning point problems, the 
oscillatory integral approach would seem to be equivalent to the method of uniform 
approximation using linear or parabolic comparison functions. The technique yields both 
continuum and discrete solutions for the parabolic potential-the former corresponding to 
scattering states (barrier problem) and the latter to resonances or bound states (harmonic 
oscillator). Precise conditions for the existence of solutions of either type are derived. 

Of importance is the fact that oscillatory integral type solutions are globally valid not 
only in coordinate space but also in parameter space. This enables us to derive the general 
parabolic connection formula relating the asymptotic wavefunction in different parts of the 
complex coordinate plane. This formula is applicable to cases when both the potential and 
the energy may be complex. 

1. Introduction 

It has long been established (e.g. Kemble 1935, 1937) that the semiclassical method 
yields exact asymptotic forms for the wavefunction in the case of real linear or parabolic 
potentials. The technique and results are important in that they are immediately 
generalisable by the technique of uniform approximation (Miller and Good 1953, 
Dingle 1956, Berry and Mount 1972) to the connection problem(s) arising in the 
context of potentials of more general shape. Thus, formulae are provided for all cases 
when the potential is locally either linear or parabolic in form at a classical turning point. 
More recently, Knoll and Schaeffer (1976) and Brink and Takigawa (1977) have 
extended the results to complex potentials (such as are commonly employed in the 
treatment of nuclear collisions). The derivation, by Brink and Takigawa, of the 
parabolic-barrier s matrix as an analytic function of the potential parameters consti- 
tutes the crucial step in their derivation of a useful closed-form expression for the 
semiclassical s matrix for scattering by a central field. Their result?, which is valid for a 
general ‘three-turning-point’ scattering problem in which the effective radial potential 
is assumed to behave linearly at the innermost (left-hand) turning point, has found 

t It should perhaps be pointed out that Brink and Takigawa’s result is essentially equivalent to formulae given 
in Connor (1973) and Connor era /  (1976) where they are derived and applied albeit in a more limited context. 
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1228 B J B  Crowley 

important application in the field of nuclear interactions (Lee et a1 1978, Takigawa 
1978, Takigawa et a1 1978, Delbar et a1 1978). 

The purpose of this paper is to demonstrate that the semiclassical method is capable 
of providing globally exact wavefunctions for linear and parabolic potentials. 
Furthermore, these wavefunctions are analytically continuable into the domains of 
complex energy and potential parameters. In the case of a parabolic potential, the 
method yields not only the scattering solutions, providing a clearer derivation of the s 
matrix than that of Brink and Takigawa (1977), but also solutions corresponding to 
bound states (harmonic oscillator) and resonances. 

2. Global uniform semiclassical approximation of the wavefunction in one 
dimension 

The basic method, believed to have been originally suggested by Maslov (1972) and 
which has been since discussed and extended by several others (including Duistermaat 
(1974), Berry (1976), Poston and Stewart (1978) and Crowley (1979, 1980a))t, 
involves expressing the semiclassical wavefunction (I, as an oscillatory or generalised 
diffraction integral. In a one-dimensional Euclidean configuration space E“’{q}, this 
takes the form: 

&(q)  = (2TA)-1’2c(a) (aZF‘q’ ’; “I) 1’2 exp[(i/ti)F(q, y ;  a ) ]  dy  
-02 aqay 

which, in general, represents a uniformly valid approximate global solution of the 
Schrodinger equation: 

for a smooth integrable Hamiltonian 2 ( p ,  4 )  and energy E ( & ) ,  in the semiclassical limit 
when Planck’s constant A is a vanishingly small parameter of the problem (Berry and 
Mount 1972). In certain cases, as will be demonstrated, the wavefunction (1) represents 
an exact solution of (2). The function F(q,  y ;  a ) ,  which is the main ingredient of the 
right-hand side of ( l ) ,  is provided by classical mechanics as follows. 

+ There are also connections with other semiclassical theories employing the Feynman path integral approach 
(see, for example, Feynman 1948, Feynman and Hibbs 1965, Berry and Mount 1972 8 7, Voros 1977). In 
particular, Balian and Bloch (1974) show that the quantal propagator (and hence wavefunction) may be 
expressed as a Fourier (or Laplace) transform, with l / h  as the new transform-variable, of a function R which 
may be defined entirely in terms of the corresponding classical problem. Since F above is a single-valued 
function of y, the integral (1) may be transformed to one over F along a contour defined by F(y) .  This yields 
the result: 

& ( q )  = ( 2 7 ~ f t - l ’ ~  R(q, F ;  a )  exp[(i/h)F] d F  I 
where R(q, F ;  a )  = C(cu)(-a’y/aF aq)”’, which strongly resembles the form proposed by Balian and Bloch. 
Whereas the integral (1) is dominated by the critical manifold 5’C (saddle points corresponding to classical 
trajectories), the integral above is dominated by the branch points of R. These occur where (ay/aF)-’ 
vanishes (i.e. on YC) and thus also correspond to classical trajectories. An interesting point is that Balian and 
Bloch propose their result for the propagator as being exact (though not necessarily with R given as above) for 
integrable systems. 
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The characteristic function W(q, a )  is first obtained by solving the Hamilton-Jacobi 
equation (Goldstein 1950): 

with boundary conditions appropriate to the problem under consideration. The 
function W(q, a ) ,  thus obtained, is the generator of a canonical transformation through 
p = d W/dq, y = d W/da, whereby the Hamiltonian X ( p ,  q )  is transformed to K ( a ,  y )  
E ( a )  which is cyclic in y. In a one-dimensional problem for which X ( p ,  q )  is indepen- 
dent of time t there is a one-to-one correspondence between y and t. 

The function F(q,  y ;  a )  is a single-valued extension of the classical action W(q, a )  
( W is not, in general, single-valued) defined to have the following properties: 

aF dW 
-= O G - =  y 
dY da (4) 

Equations (4) define a critical manifold X, in this case a line in lE‘”{q}@l“”{y} commonly 
known as the classical trajectory, to which the classical motion is confined, and on which 
W = F. With the added constraints that (a2F/dy dq)’” be non-vanishing everywhere on 
X (except perhaps at 1 yI = 00) and contain only integrable singularities in E‘’){y}, the 
above are generally sufficient to determine uniquely a universal analytic function F, 
provided that W(q, a )  and its derivatives are not everywhere single-valued. The 
analyticity of F is an indication that the first of equations (4) yields classical dynamical 
solutions in complex q -space. These are associated with complex trajectories (Keller 
1958, Knoll and Schaeffer 1976, Koeling and Malfliet 1976, Balian et a1 1978). 

Multivaluedness of the classical action can be associated with the presence of 
caustics in lE‘”{q}. In terms of F, the caustic set %? is given by 

(6) 

(see, for example, Connor 1976) which, in one dimension, turns out to be just the 
classical turning points. A useful description of the local properties of caustics is 
provided by catastrophe theory (Poston and Stewart 1978, see also Berry 1976, Connor 
1976), the basis of which is acelebrated theorem due toThom (1969, 1972, 1975). One 
of the implications of this theorem is that, in E‘”{q}, the only structurally stable caustics 
(Berry 1976) that can occur are those associated with the fold catastrophe. 

The connection between (1) and the JWKB approximation is provided by approx- 
imately evaluating the integral (1) by means of the saddle- point method (Matthews and 
Walker 1970, Connor 1976). This results in local approximations to $(q ) ,  in the form 
of superpositions of JWKB approximants (e.g. Crowley 1979). Such local asymptotic 
approximations to $ ( q )  are not valid at or near caustics but do yield reversible 
connection formulae relating the multipliers of the JWKB approximants on either side 
of a turning point. This is because $(q )  as defined by (1) is uniformly valid across a 
caustic. 

Furthermore, equation (4) reveals the direct correspondence between the saddle 
points that dominate the integral (1) and classical trajectories. In event of the 
saddle-point approximation breaking down (for reasons that are unconnected with 

% = {qidF/ay = d2F/dy2 = 0} 
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ordinary (catastrophe-type) singularities) one is unable to speak of classical tra- 
jectories-at least in the global sense. Such a breakdown occurs typically when a 
classical action characteristic of the problem becomes vanishingly small in some locality 
of parameter space. For example, in the case of the parabolic potential discussed in 
§ 2.2, the large parameter on which the validity of the saddle-point approximation 
depends is E = -a /h  (equation (22a)) where a is proportional to the action integrated 
between the classical turning points. In the semiclassical limit, E is typically very large 
except in the immediate vicinity of LY = 0 where the saddle-point approximation fails. 
The nature of the singularity at a = 0 is beyond the scope of catastrophe theory. It has 
been pointed out by M V Berry (private communication) that this is probably due to the 
fact that any analytic continuation through the singularity necessarily involves going 
into complex coordinates and time, whereas catastrophe theory is applicable only to 
problems for which the critical manifold can be smoothly and reversibly mapped onto a 
real Euclidean manifold. Thus complex analytic continuation is not necessarily 
incompatible with catastrophe theory (as has been pointed out, for example, by Connor 
(1976)) and is permitted, for example, in all cases involving linear potentials (§ 2.1) and, 
as an approximation, in cases where the potential behaves linearly at all turning points. 
Nonetheless the orbiting or barrier-top singularity ( E  = 0) encountered in § 2.2 is a 
generic feature of wavefunctions resembling (1). The inability of catastrophe theory to 
describe such a feature represents a serious deficiency to the extent that the general 
usefulness of catastrophe theory in such applications is questionable (see note added in 
proof). 

In ( l ) ,  C ( a )  is just a normalisation constant. Here we adopt the standard form 
appropriate to a scattering wavefunction and put 

C ( a )  = (dP/da)-1’2 

where P ( a )  = (2mE(a))”’. Henceforth, we shall work in units in which the particle’s 
mass m is equal to unity. 

2.1. Application to the linear potential 

Because it provides a clear illustration of the above method, we briefly review the 
application of the above to motion in a linear potential. This is the simplest non-trivial 
example to which the method may be applied. 

Consider the Hamiltonian X( p ,  q )  = i p ’  - i q  in which the potential energy is 
represented by -:S. Solving the Hamilton-Jacobi equation 

(a w / a q y  = a + q, 

W ( q ,  a ) = $ ( q  + a y 2 .  

y = t = d W / a a = ( q + a )  1 / 2  . 

where i a  = E ( a )  is the energy, yields 

Hence 

(7) 
The critical manifold defined by (7) has two branches corresponding to the two branches 
of the square root. For real q these correspond to t < 0 and t > 0. By equations (4) and 
( 5 )  the above leads directly to the generating function: 

(8) 1 3  F(q,  t ;  a )  = ( q  + a ) t  -7t 



Uniform approximations and oscillatory integrals 1231 

which is a perfect example of a fold catastrophe that is associated with the caustic 
(classical turning point) at q = -a. Application of equation ( 1 )  yields the wavefunction 
as 

W 

lCIa(q) = ( 2 ~ h ) - ” ~ ( 4 a ) ” ~  exp{(i/h)[(q + a ) t  -3t3]}dt (9a 1 

(using Abramowitz and Stegun (1965, equation (10.4.32))) by which one obtains an 
exact solution of the Schrodinger equation, - f i 2 ( d 2 $ / d q 2 )  -q$ = a$ (see Abramowitz 
and Stegun 1965, § 10.4). 

In the semiclassical limit (‘h + 0’) the argument of the Airy function becomes large 
for q +a # 0. In the asymptotic limit of large 1x1, the function Ai(x) exhibits the 
well-known Stokes phenomenon (Stokes 1904,1905, Kemble 1937, Berry and Mount 
1972, Dingle 1973) which also arises in the evaluation of the integral ( 9 a )  by the 
saddle-point method. The result is, for x = q +a ,  

2 3 / 2  where W = j x  and 

a+= 1 ,  -T < arg x < ~ / 3  a - =  1 ,  4 3  < arg x 6 T 

= 0 ,  4 3  <arg x G T = 0, -T < arg x < -713. 

This yields the well-known connection formula: 

713 < arg x < 5 4 3  - ~ / 3  < arg x < ~ / 3  

where 6’ = $( -x )~ / ’ ,  larg 6’1< ~ / 2 .  This formula is reversible only in the sense that the 
left- and right-hand sides of the formula represent limiting asymptotic forms of the 
wavefunction? (see discussion by Berry and Mount (1972)).  

In more general cases, the fold catastrophe provides a valid local description of 
behaviour near an isolated turning point where the potential is locally linear with 
non-vanishing slope. In this way one obtains the local Airy function approximation 
which provides a confined local analytic continuation of the semiclassical wavefunction 
around a turning point. This is the basis of the complex trajectory formalism of Knoll 
and Schaeffer (1976).  

For the purposes of treating transmission through a thick barrier (for which the 
potential may be assumed to vary linearly at each of a pair of well-separated turning 

then 
-1 

lim $ ( x )  x [ x- ’ I4  cos( W -31 = constant = 2A 
x - + m  

and conversely. 
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points), the second connection formula which corresponds to a (globally) unphysical 
solution of (2) is sometimes useful. This solution arises when the integral (9a),  instead 
of being carried out along the contour Im t = E < 0, is carried out along Re t = 0, 
Im t > E ;  Im t = E <0 ,  Re t > O  between t = ico and t = m f i c  In this way we obtain the 
solution 

+ ( x ) ~ A i ( - x / h ~ ’ ~ )  - i  B i ( - ~ / h ~ / ~ )  

(Abramowitz and Stegun 1965, equations (10.4.32-3)) and hence (e.g. Dingle 1973) the 
second connection formula which is characterised by the presence of an exponentially 
growing term in the classically forbidden region: 

x /3  < arg x < 5 ~ 1 3  - x / 3  < arg x < 7~13. 

The solution therefore describes unidirectional propagation of a particle emerging from 
the forbidden region into the allowed region. Such a solution may be used to describe 
the transmitted wave in a treatment of barrier penetration. The manner of derivation 
shows that this solution corresponds to a classical dynamical solution that has been 
analytically continued into the domain of complex time. In this sense we can think of 
tunnelling as being associated generally with a complex trajectory (Miller and George 
1972). In 8 2.2 we consider explicitly the problem of penetration through a parabolic 
barrier in a manner which illustrates the role of trajectories in complex coordinates and 
time. 

2.2. Application to the parabolic potential 

The simplest situation in which the Airy function approximation breaks down is when 
the potential is dominated at a turning point by a quadratic dependence on position. An 
example of such a situation occurs in connection with classical orbiting in a spherically 
symmetric attractive potential. One finds that, for a certain range of energy and angular 
momentum, two turning points of the radial motion associated with the angular 
momentum barrier may occur close together, giving rise to significant barrier penetra- 
tion effects. As shall eventually become evident, at the classical orbiting situation when 
the two turning points are coincident, the concept of a classical trajectory breaks down. 

We consider the related problem of motion in a one-dimensional parabolic poten- 
tial. We take the Hamiltonian to be 

w # O  x=L 2 - L  2 2 
2 P  2w 4 

and consider solutions of the Schrodinger equation: 

for energy E = w a ,  that have the form of (1). It is convenient to define w so that 

- ~ / 2  < arg w s ~ / 2  U3a)  

which results in no loss of generality since the original physical problem is specified in 
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terms of w 2  alone. The parameter a may now be defined to be in the range 
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- ~ / 2  s arg a < 3 ~ / 2  i13b) 
which, for given w ,  permits all complex values of E. 

A particular integral of the Hamilton-Jacobi equation 

is 

where 6 = (q2+ T ~ ) ~ ' ~  and q2 = 2 a / w  with 
2 - . r rsargT < 2 ~ .  

The functions ( ( 4 )  and In ( (q  + t)/r,~) are multivalued functions of q and it is necessary 
to take account of all branches of these functions. The function W given by (15) thus 
possesses a complicated multivaluedness. 

Differentiating (15) with respect to a yields 

For Im w = 0, the characteristic function (15) leads to the retarded 'scattering' solution 
in which incident waves propagate from the right (q  > 0). This can be seen from the 
following: that -5 = w - ' a  W/dq < 0 for Im q = 0, Re q + CO on a branch of Yt on which 
y -+ -CO; -& > 0 as 1q/ -+CO (Im q = 0) on a branch of Yt on which Re y + +CO; for (Y > 0, 
the incident and transmitted components of the wavefunction correspond to real y ;  for 
a < 0, y is real for the incident and reflected components. For Re w > 0, the solution 
(15) therefore describes incoming waves (& > 0) at q + for Re y -+ -a, and outgoing 
waves (& < 0) at /q  + CO for Re y -+ +CO. The advanced solution corresponds to - W, 
while solutions describing an incident wave propagating from the left ( q  < 0) are 
obtained by replacing q by -4.  

The generating function F by which the complicated multivaluedness of (15)  is 
tamed is, for x = q/v ,  

(17)  F ( y , x ;  v)=-wv2[x e-Y-%e-2"-~y-T(x 1 2  -$)I 
which is valid for all q # 0. Differentiation of (17)  yields 

+ 1) (18) 2 (2x e-' - e-2' - aF = Zwq 1 

w v 2  e-" d2F 
ax dy 
-= 

It is evident from the above that aF/ay = 0 both implies and is implied by (16) ,  while 
F = W on the critical manifold Yt= { x ,  yldF/ay = 0). The caustic set, from the 
definition ( 6 ) ,  comprises the turning points x = 33 .  
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A uniformly valid semiclassical wavefunction that follows from the above in the 
manner of (1) is 

m 

$ = C(a)(2.rrti)-’/2 dY 

The integrand of (21) is an entire function of 
guaranfeed if the integral is carried out along a 

Im (UT2 e-2Y) + 00 as 

and 

Re[y(l- iwv2/t i ) ]+m as 

y, and convergence of the integral is 
contour such that 

R e y + - m  

Rey++oo .  

It may be verified by direct substitution that the result (21) is an exact solution of the 
differential equation, h2 d2$/dx2 + w2q4(x2 - 1)$ = 0, which is just the transformed 
form of (12). The semiclassical method outlined in 8 2 thus yields an exact solution of 
the quantum-mechanical problem of motion in a parabolic barrier. To confirm that it is 
the correct solution, it is necessary to proceed further. 

The integral (21) may be transformed by the substitutions: 

7ii/4 1/2 e - ~  = ( iE)1 /2  e - ~ ,  z = e  E 

In accordance with (13b), (22a) implies 

-IT s arg ic < IT ( 2 2 4  
which is the same convention as that adopted by Brink and Takigawa (1977). Appli- 
cation of (22) transforms (21) into 

+(x) = ~(a ) ( i / . r r ) ”* ( i e ) ’ /~  exp[-iie ~n(ie/e)l  etixz -4  +is e x p ( z ~  e - d 4  - iz 2 )  dz 

(23) 

Using the integral representation of the Whittaker function D,( t )  given by ErdClyi 

lom 
for Im(E) < 4, when the integral may be carried out along the positive t axis. 

et a1 (1953, equation (8.3(3))) whence 

we are able to express (23) in the form 

+ ( X I  = ~(cu)(i/.rr)”~(i~)”~r(t+i~) exp[-iiE ~ n ( i e / e ) ] ~ - ; - ~ ~ ( - ~  (24) 
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It is convenient to express the wavefunction $(X) in terms of the functions E+(€,  X) ,  
E-(€ ,  X) defined as follows: 

and which have the following asymptotic forms (Erdelyi er a1 1953, equation (8.4(1))) 
for 1x1 + 00 in larg(x)- (*.ir/4)/ s .ir/2+: 

E*(€, x)  - x - ’ ’ ~  exp[*i(ix2 - E In x - $7111 (26) 

describing outgoing (+) and ingoing (-) waves. With the aid of ErdClyi er a1 (1953, 
equation (8.2(6))) we are able to deduce the following identity: 

(2.ir)”2~-(E, x)  = -r(t+iE)[e’v.EE+(e, x)- i  e-’““‘E+(E, -X)J  (27) 

The functions E*(€, X) may be used to define standard ingoing (-) and outgoing (+) 
wave solutions as follows: 

(28) 

in terms of which we can define standard solutions, ~ I W ,  ~ R W  and ~ T W ,  whose 
asymptotic forms (in appropriate argument ranges) describe incident, reflected and 
transmitted waves respectively, according to 

4*(X) = 21’2E*(~, X) exp[*fic ln ( i~ /e ) ]  e*aTs 

4 I W ( X )  = 4-(XI #‘RW(X) = 4’(x) 4Td-W = $+(-x) (29) 

(which are in accordance with standard phase conventions). Using (26), the asymptotic 
forms, for 1x1 += 00, of these standard solutions may be verified as being as follows: 

4 1 W ( ~ )  - (;x)-”’ e-$Tc exp{-i[iX’ - E In x + $ E  ln(iE/e) - i.irl> 

4 R W ( ~ )  - (+x)-”’ earrr exp{i[iX2 - E In x + $ E  ln(iE/e) -i.irl> 
- 3 ~ 1 4  s arg X s rr/4 

- ~ / 4  s arg X s 3 ~ / 4  

~ T W ( X )  - (-Lx-”’ etTr exp{i[iX’ - E ln(-x)  + 

(300 1 

(30b) 

ln(ie/e) + iv]> 
- . i r / 4 s a r g ( - X ) s 3 ~ / 4  

exp{i[iX2 - E In x + 4~ In(iE/e) -i.ir]} = (;x)-l/2 

- 5 r r / 4 ~ a r g X s - 1 ~ / 4 .  ( 3 0 ~ )  

t Here we are specifying the boundaries of the domains of validity of the asymptotic expansions to be Stokes 
lines (e.g. see Berry and Mount 1972) with which one may associate changes in the multiplier of an 
exponentially subdominant term. However, as such a term remains subdominant upon crossing a Stokes line, 
the expansion in fact remains valid (in the usual Poincar6 sense) in an open domain whose limiting boundaries 
are antistokes lines beyond which the term becomes dominant. In this way the asymptotic forms given may be 
extended into overlapping domains of validity. However, for the purposes of constructing connection 
formulae, in the semiclassical limit, it is convenient to confine the asymptotic expansion to regions bounded by 
Stokes lines by requiring that the expansion be valid in the complete sense of Watson (191 1). This yields the 
most accurate representation in that errors arising from exponentially subdominant terms are kept to a 
minimum. The importance of such considerations has been recently stressed by Balian er al (1978). 
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The following identities are implied by (27): 

where 

(2T)-1/2r($+ ie) exp[-ie ln(ie/e)]. (32) 
Thus, by combining equations (24), (25), (28) and (29) and making use of (31), one 

can express the wavefunction $(X) in the following ways: 

$(X) = A(E)R(E)  e - " ' 4 d X )  (33a) 

= A(E)[4IW(X) + R  ( E ) 4 R W ( X ) I  (33b) 

= -A(€)  e-"'[e-"'R(E)4RW(X) +idIW(-X)]  (33c) 
where 

It is now easily verifiable, with the aid of (29), that the wavefunction (33) is that which 
satisfies the boundary conditions of the physical problem (as imposed in selecting the 
particular solution (1 5) of the Hamilton-Jacobi equation). 

Equations (30) and (33) yield the asymptotic forms of $(X) as /XI+oo for 
- 5 ~ 1 4  s arg X 6 3 ~ 1 4 .  The required asymptotic form must be obtained by a suitable 
combination of one or more of equations (30) with one of (33) according to the range of 
the argument of X. This leads to a manifestation of the Stokes phenomenon such as was 
encountered with the asymptotic forms of the Airy function in connection with the 
solution of the linear potential problem. Here the phenomenon is characterised by 
Stokes lines whose asymptotes lie along arg X = * ~ / 4 ,  *37~/4, -57~14. The X plane 
for - 5 ~ 1 4  s arg X 6 37~14 is now divided into three distinct domains corresponding to 
- 5 4 4  s arg X s - 4 4 ,  4 4  6 arg X G $ 4 4 ,  + ~ / 4  s a r g X  s 3 4 4  at 1x1 +CO. 

This is reflected by the more complicated nature of the connection formula: 
~ - 1 / 2 ( - ~ - 2 ~ € ~ ( ~ )  e i l  + e - i l )  

T ~ / 4 s a r g  X s 3 r / 4  

where i = $X'-  E In X + $ e  ln(e/e) - 7~14. Previous statements of this formula assume 
either a real potential barrier and real energy (e.g. Miller and Good 1953, Connor 1968, 
Berry and Mount 1972, Child 1976) or a real potential barrier and complex energy 
(Connor 1973). In both these cases X can be assumed to be real and the above reduces 
to a simpler bilateral form. The bilateral connection formula can be applied when X is 
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complex and interest is confined to the domains /a rgs tXI<r /4 ,  e.g. Connor et a l  
(1976). 

By uniform approximation (Miller and Good 1953, Connor 1968, 1973, Berry and 
Mount 1972, Brink and Takigawa 1977) using the comparison equation, 

d2* -+ ($X’ - E ) $  = 0, d X 2  (35) 

the connection formula (34) is generalisable to the problem of scattering by a general 
barrier that has associated with it just two turning points, {q+, q-}. The wavefunction 
Y(q)  describing this more general system is given approximately in terms of the solution 
$(X) of ( 3 9 ,  as given by (33), by 

where the transformation relating X and q is defined by the mapping: 

1 
($X2- E ) ’ / ’  d X  = - S + ( q )  IX 261’2 ri 

where 

(37) 

integrated on a branch such that Re aS,/aq > 0 as q += 00. The turning points qs 
correspond, respectively, to the turning points X = f 2 ~ ” ~  of the comparison equation. 
The mapping (37) is one-to-one provided that E and the integration contour of (38) are 
defined so that 

integrated in a clockwise sense around a cut joining ql, which ensures that the zeros of 
E - V(q)  map onto the zeros of iX2 - E. The above lead to the standard solutions @*, 
which correspond to 4*,  and which describe ingoing and outgoing wave solutions in 
larg(X) - (*7~/4)1 s r / 2 ,  being given, in these argument ranges, as follows?: 

t Equations (40) represent the so-called strong-coupling limits of the semiclassical approximants a* and, as 
such, are not exactly equivalent to the weak coupling forms, such as are provided by (26) and (30) when V(9) 
is parabolic, except in the limit of Xz > > 4 ~  (see discussions by Crothers (1976, 1978), and Lozano and Olver 
(1978)). For a parabolic potential, V(X) = -$h2/X2, equation (37) gives 

(l/h)S+(X) =$X(X’-~E)’ ’~-E In[(X+(X2-4c)”’)/2]+& In E 

which reduces to i + ~ / 4  (equation (34)) only in the limit X+CO.  We note that, in general, the JWKB 
approximation (see Crowley 1979) supplies the strong-coupling limit as, for example, in the case of equations 
(40), while the weak-coupling limit, from which one obtains the S matrix, corresponds to the limit X + m. In 
particular, we observe that the wave propagation matrix method of Lee and Takigawa (1978) provides a 
weak-coupling limit of the semiclassical wavefunction and, for this reason, should be used with some caution. 
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-1/2 
= (- 1 -) as, exp[ *i(:s+(q)-:)] 

a4 

which have the structure of local JWKB approximants (e.g. Crowley 1979). Hence the 
(strong-coupling?) generalisation of (34) may be deduced by transforming the asymp- 
totic wavefunctions according to 

1 as+ 
h as 

X+-- .  

The boundaries between the regions defined for /XI + 00 by arg X = (-5n-14, - r /4) ,  
(-7r/4, ~ / 4 ) ,  (n-/4,3n-/4) are the mappings of the Stokes lines in { X }  onto {q}.  The 
correspondence between the Stokes lines in { X }  and those in { q }  may be determined 
from the local behaviour in the vicinities of the turning points. 

In cases for which the physically accessible points X lie in the domains /arg(*X)/ < 
714, the results expressed by (33) and (34) clearly define R ( E ) ,  equation (32), as the 
barrier reflection coefficient, and 

T ( E )  = R ( E )  e-rrr (42) 
as the barrier transmission coefficient. These results form the basis of the barrier s matrix 
of Brink and Takigawa (1977), the connection being provided through the following 
expression for the barrier matrix B (Lee and Takigawa 1978): 

with E given by (39) (see also Crowley 1980a, b). 
For / E I  >> 1 = lo$ >> h, the classical trajectories correspond to saddle points of the 

integral (21) which give rise to the various exponential terms in the asymptotic forms of 
4. A treatment of the Stokes phenomenon is a feature of the saddle-point approxima- 
tion. The procedure (Froman and Froman 1965, Berry and Mount 1972) involves 
invoking the principles of reality (or, alternatively, single-valuedness (Furry 1947)) and 
of exponential dominance. The connection formula (34) provides a clear illustration of 
the latter-the multipliers associated with each of the approximants X1'2 e*ir change 
only at a Stokes line where the term is subdominant. Note that in the case of / E /  >> 1, 
Airy function approximations provide a good local description of the wavefunction 
near a turning point and correspond to approximating the potential near a turning point 
by a linear function (§ 2.1) (Knoll and Schaeffer 1976). However, when 6 1, the 
saddle-point approximation breaks down and the concept of classical trajectories is no 
longer globally valid. This situation corresponds to energies close to the barrier top. 
The presence of resonances in this region can lead to important effects, even in the 
semiclassical limit (Brink and Takigawa 1977, Lee et a1 1978). The derivation of 
the result (33) and the connection formula (34) does not depend upon the validity of the 
saddle-point approximation and holds for all E such that Im E <:. 

We now compare the result of applying the saddle-point approximation to the 
evaluation of the oscillatory integral ( l ) ,  for the general barrier problem, with the 
uniform approximation wavefunction ( 3 6 ) .  We note that the latter is equivalent to (33) 

T See footnote p 1237. 
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when q5(*) are replaced by a* (equation ( 4 0 a ) )  and that this is the result that one would 
have obtained from the oscillatory integral in the saddle-point approximation (Crowley 
1979) in the presence of only two turning points in the active region. The absence of any 
other nearby turning points is an indication of the validity of a local analytic continua- 
tion based upon the parabolic connection formula (analogous to the Knoll and 
Schaeffer (1976) approximation as applied to single isolated turning points). Thus, in 
the semiclassical limit the oscillatory integral and uniform approximation methods are 
effectively equivalent, at least in so far as their application to one and two turning point 
problems is concerned. Both methods give exact results for linear and parabolic 
potentials. 

2.2.1. Bound states and resonances. The foregoing provides solutions to (12) for 
/arg w /  < n-/2 and Re(+) <t.  In order to investigate solutions for which arg w 6 n-/2 
and Re(-ic) z-t, we first make the substitutions 

where 

thereby transforming (12) to 

2 a2* -h y + & 2 q 2 *  = 2 G * .  
as (45 )  

It follows from (16) that the solution of (45) provided by (21) corresponds, for real &, to 
motion in imaginary time. This observation enables us to identify another set of 
possible solutions (valid for Re 6 > 0) for which such motion takes place in real time. 
These are given by 

ioc. 

exp(--$v2(x2-i)) 1 eY/’exp eY-+ezY+iy ) )  dy  
-io0 

(cf equation (21)) 

where 

E .  (47) = ;/h = e 3 ~ i / 2  

Transforming the integral (46) by means of the substitutions: 

1/2  ir z = - i v  e 

leads to 

where C denotes the contour Iz/v41 = 1 in the complex z plane. The wavefunction (49) 
consists of a sum over integrals corresponding to all branches of the function 
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ezx-!zz -"--i 
t '. The wavefunction defined by (49) is finite, single-valued and 9' in 

--CO s X s CO only if I/ + 1 is a positive integer. With 

v = n + $  n = 0 , 1 , 2 , 3  , . . .  (50)  

the integrand becomes single-valued and, by means of the expansion (Abramowitz and 
Stegun 1965, equation (22.9.17)) 

and use of Cauchy's theorem, reduces to 

where H , ( x )  denotes a Hermite polynomial of degree n. Thus we obtain the well- 
known bound-state solutions of the harmonic oscillator together with the energy 
quantisation rule (50). The wavefunction (51) is 9' only if Re 4 > 0. Similar solutions 
valid for Re 4 < 0 may be derived by using -F in place of F (corresponding to the 
advanced scattering solution instead of the retarded solution) in deriving (46). These 
discrete solutions describe states with energies 

E,, = ( n  +$)h&. 

From (44), Im G C O j I m  E,, G 0. Therefore, for Im G f 0, these states possess finite 
lifetimes given by 

T,, =[(n +;)lIm GI]-' 

and are therefore analogous to resonances. It is perhaps surprising that the presence of 
such solutions does not seem to depend upon the relative magnitudes of the real and 
imaginary parts of 4. 

Thus, to summarise, the Schrodinger equation (1 2) possesses continuum solutions 
for Re(-ie) < $ and /arg w1 < 7 ~ / 2  (where -ie = ia/h), and discrete solutions for -if = 
n +$ and 0 < /arg w /  s ~ / 2 .  Note that the discrete eigenvalues correspond to the poles 
of the reflection coefficient R ( E )  given by equation (32). 

3. Conclusions 

The semiclassical method based on the oscillatory integral yields globally exact analytic 
solutions of the one-dimensional Schrodinger equation for linear and parabolic poten- 
tials. For more general one-turning-point and two-turning-point problems the method 
is apparently equivalent to the uniform approximation involving the method of 
comparison equations. 

The same technique also yields the bound-state solutions of the one-dimensional 
harmonic oscillator and, for complex w, discrete solutions analogous to resonances 
whose presence in all parabolic potentials, with the exception of the real barrier, is 
independent of the relative magnitudes of the real and imaginary parts of w.  

The wavefunction (1) possesses all the usual features normally attributed to an exact 
quantal wavefunction, such as single-valuedness and continuity, and the ability to 
describe specifically wave-mechanical phenomena such as diffraction and tunnelling. 
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Applying the saddle-point approximation (in the short-wavelength limit) leads directly 
to a description of the same wave field in terms of trajectories which, when real, yield a 
description in terms of classical particle dynamics. Complex trajectories are also a 
possibility and these provide a dynamical (or geometrical) description of diffraction and 
tunnelling. The superposition principle is retained and this leads to the possibility of 
interference between trajectories on different sheets of the critical manifold. 

Having shown that (1) represents the exact solution of the quantal problem for two 
exactly soluble cases, we are led to speculate as to whether a superposition of 
wavefunctions of type (1) represents the general exact solution of (2). There is no 
obvious a priori reason why this should be so. It is nevertheless an interesting possibility 
which, given that the only dependence of the integrand on h is provided through the 1 / h  
appearing in the exponent, would be consistent with the claims of Balian and Bloch. 
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Note added in proof. According to catastrophe theory, the only structurally stable point singularity that can 
occur in the two-dimensional parameter space {a,  q }  is the cusp. While the barrier-top singularity of S: 2.2 is 
not a cusp, the wavefunction $m=o(q) is exactly a section through the cusp diffraction catastrophe. In other 
words, the most singular point is correctly described with the correct singularity index, in spite of the non- 
catastrophic nature of the (logarithmic) singularity in the extended action F. Although the orbiting singularity 
represents a limitation of catastrophe theory in its current form, it does not follow that catastrophe theory is 
therefore without application in such situations. Whereas there is need to exercise caution when applying 
Thorn’s theorem to the singularities of wave-fields in the short-wavelength limit-in view of the possible 
presence of singularities that are beyond the scope of the theorem-the local descriptions of catastrophe-type 
singularities (those that are covered by the theorem) remain valid. 

I am most grateful to Michael Berry for drawing my attention to the above. 
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